
1 | P a g e

Calculated Fields in Data Controllers

Data Aquarium Framework dynamically parses SELECT statements in commands

written in SQL.

The parsing engine is very simplistic and expects a single SELECT statement with

FROM, WHERE, and ORDER BY clauses. The last two clauses of SELECT statement are

optional. You can create such commands with any query builder or rely on the

statements generated automatically by Code OnTime Generator.

The engine is trying to identify all fields that are available in the statement, their aliases,

the table name in the FROM clause, the filtering condition and the sort expression. You

can include multiple JOIN expressions to de-normalize your data and produce a data set

that truly represents your data objects to hide the complexity of the normalized database

schema.

The parsed information is used to dynamically create SQL statements capable of paging

and sorting of very large data sets. It is also used to generate UPDATE, INSERT, and

DELETE statements.

Data controller requires that all fields that are displayed in views are enumerated in

/dataController/fields/field node. Field list provides information about data types,

primary keys, support for update and the need to have a non-empty value in the fields.

All of these field properties are assisting the framework in generating dynamic SQL

statements.

Let’s consider a few methods of introducing calculated fields that can be used by the

framework to provide reach data presentation.

M E T H O D 1 : S I M P L E C A L C U L A T E D F I E L D S

Here is sample command for Employees table in Northwind database.

http://blog.codeontime.com/2009/05/calculated-fields-in-data-controllers.html
http://codeontime.com/productsDAF.aspx
http://en.wikipedia.org/wiki/Sql
http://codeontime.com/
http://en.wikipedia.org/wiki/Denormalised

2 | P a g e

 <command id="command1" type="Text">

 <text><![CDATA[

select

 "Employees"."EmployeeID" "EmployeeID"

 ,"Employees"."LastName" "LastName"

 ,"Employees"."FirstName" "FirstName"

 ,("Employees"."LastName" + ', ' + "Employees"."FirstName") "FullName"

 ,"Employees"."Title" "Title"

 ,"Employees"."TitleOfCourtesy" "TitleOfCourtesy"

 ,"Employees"."BirthDate" "BirthDate"

 ,"Employees"."HireDate" "HireDate"

 ,"Employees"."Address" "Address"

 ,"Employees"."City" "City"

 ,"Employees"."Region" "Region"

 ,"Employees"."PostalCode" "PostalCode"

 ,"Employees"."Country" "Country"

 ,"Employees"."HomePhone" "HomePhone"

 ,"Employees"."Extension" "Extension"

 ,"Employees"."Photo" "Photo"

 ,"Employees"."Notes" "Notes"

 ,"Employees"."ReportsTo" "ReportsTo"

 ,"ReportsTo"."LastName" "ReportsToLastName"

 ,"Employees"."PhotoPath" "PhotoPath"

from "dbo"."Employees" "Employees"

 left join "dbo"."Employees" "ReportsTo" on

 "Employees"."ReportsTo" = "ReportsTo"."EmployeeID"

]]></text>

This is the list of corresponding fields.

<fields>

 <field name="EmployeeID" type="Int32" allowNulls="false"

isPrimaryKey="true"

 label="Employee#" readOnly="true" />

3 | P a g e

 <field name="FullName" type="String" allowNulls="true" label="Full Name"

 readOnly="true"/>

 <field name="LastName" type="String" allowNulls="false" label="Last Name"

/>

 <field name="FirstName" type="String" allowNulls="false" label="First Name"

/>

 <field name="Title" type="String" label="Title" />

 <field name="TitleOfCourtesy" type="String" label="Title Of Courtesy" />

 <field name="BirthDate" type="DateTime" label="Birth Date" />

 <field name="HireDate" type="DateTime" label="Hire Date" />

 <field name="Address" type="String" label="Address" />

 <field name="City" type="String" label="City" />

 <field name="Region" type="String" label="Region" />

 <field name="PostalCode" type="String" label="Postal Code" />

 <field name="Country" type="String" label="Country" />

 <field name="HomePhone" type="String" label="Home Phone" />

 <field name="Extension" type="String" label="Extension" />

 <field name="Photo" type="Byte[]" onDemand="true" sourceFields="EmployeeID"

 onDemandHandler="EmployeesPhoto" onDemandStyle="Thumbnail"

allowQBE="false"

 allowSorting="false" label="Photo" />

 <field name="Notes" type="String" allowQBE="false" allowSorting="false"

label="Notes" />

 <field name="ReportsTo" type="Int32" label="Reports To">

 <items style="Lookup" dataController="Employees"

newDataView="createForm1" />

 </field>

 <field name="ReportsToLastName" type="String" readOnly="true"

 label="Reports To Last Name" />

 <field name="PhotoPath" type="String" label="Photo Path" />

</fields>

These definitions were automatically produced by Code OnTime Generator but you

should have little difficulty in making your own changes when needed.

http://codeontime.com/

4 | P a g e

You have probably noticed that FullName field was entered manually in SQL text and in

the list of fields. The value of this field is a composition of LastName and FirstName.

This is how the field looks when displayed in a browser.

The same field is immediately displayed when you select an employee in the lookup

field. Notice the value Employee Last Name field.

http://lh6.ggpht.com/_FyYdtUpPPLU/Sf6xqdE2qpI/AAAAAAAAAfk/93F740PvHIk/s1600-h/image[6].png

5 | P a g e

Similar modifications can be done to other related data controllers.

The calculated expressions must remain simple. Otherwise you are risking to confuse

the powerful but rather simple-minded SQL parser of the framework. High performance

comes at a price!

M E T H O D 2 : U S E D A T A V I E W S F O R C O M P L E X C A L C U L A T I O N S

http://lh6.ggpht.com/_FyYdtUpPPLU/Sf6xrRL2F0I/AAAAAAAAAfs/E-cZEX06H2I/s1600-h/image[20].png

6 | P a g e

Complex formulas can be easily hidden in the views.

For example, create the SQL view as shown in example.

create view EmployeeView as

 select

 EmployeeID,

 LastName + ', ' + FirstName as FullName

 from

 Employees

Modify the command from the previous sample to look like the one below. Notice the

changes in field FullName and joined view EmployeeView.

 <command id="command1" type="Text">

 <text><![CDATA[

select

 "Employees"."EmployeeID" "EmployeeID"

 ,"Employees"."LastName" "LastName"

 ,"Employees"."FirstName" "FirstName"

 ,EmployeeView.FullName

 ,"Employees"."Title" "Title"

 ,"Employees"."TitleOfCourtesy" "TitleOfCourtesy"

 ,"Employees"."BirthDate" "BirthDate"

 ,"Employees"."HireDate" "HireDate"

 ,"Employees"."Address" "Address"

 ,"Employees"."City" "City"

 ,"Employees"."Region" "Region"

 ,"Employees"."PostalCode" "PostalCode"

 ,"Employees"."Country" "Country"

 ,"Employees"."HomePhone" "HomePhone"

 ,"Employees"."Extension" "Extension"

 ,"Employees"."Photo" "Photo"

 ,"Employees"."Notes" "Notes"

7 | P a g e

 ,"Employees"."ReportsTo" "ReportsTo"

 ,"ReportsTo"."LastName" "ReportsToLastName"

 ,"Employees"."PhotoPath" "PhotoPath"

from "dbo"."Employees" "Employees"

 left join "dbo"."Employees" "ReportsTo" on

 "Employees"."ReportsTo" = "ReportsTo"."EmployeeID"

 inner join EmployeeView on

 Employees.EmployeeID = EmployeeView.EmployeeID

]]></text>

 </command>

Run the program and observe that the result is identical.

Additional views can be linked to the main (updatable) table in the FROM clause and

allow use of calculated values. This approach is preferred to the previous one since it

brings the business logic into the database where it belongs.

M E T H O D 3 : T H E P O W E R O F R O W B U I L D E R

Business rules provide a complete control over the field value calculation when you need

it. You can find an example of RowBuilder attribute usage in business rules at

http://blog.codeontime.com/2009/02/business-rules-rowbuilder-attribute.html.

Everything has a price though. High performance user-defined sorting and filtering is

supported in the framework via dynamic SQL statements. Calculated values provided by

business rules are not a part of SQL operations and thus make it impossible to have

these great features in the user interface.

The previous two methods do provide these capabilities as you can see here.

http://blog.codeontime.com/2009/02/business-rules-rowbuilder-attribute.html

8 | P a g e

Fields calculated by methods marked with RowBuilder attribute will not sort or filter.

M E T H O D 4 : C A L C U L A T E D D A T A B A S E F I E L D S .

Modern database servers support server-side calculated fields to provide maximum

efficiency. For example, Microsoft SQL Server supports computed fields. The screen

shot below shows the computed field FullName as presented in SQL Management

Studio.

http://lh4.ggpht.com/_FyYdtUpPPLU/Sf6xs-X6RNI/AAAAAAAAAf0/C26RjE8jLQc/s1600-h/image[27].png

9 | P a g e

Here is the Northwind sample that shows the computed field in action. Notice that the

field is automatically recognized by Code OnTime Generator and marked as read-only.

http://codeontime.com/
http://lh3.ggpht.com/_FyYdtUpPPLU/Sf6xt1hlL6I/AAAAAAAAAf8/JKjKmBHiIQU/s1600-h/image[48].png

10 | P a g e

The advantage of server-side calculated fields is that such fields are also recognized in

any related objects. Here is the order management view that shows the computed

Employee Full Name field. You can view sort, filter, lookup, and do any other user

interface operation that you can do with any other standard field.

http://lh3.ggpht.com/_FyYdtUpPPLU/Sf6xvCtoB-I/AAAAAAAAAgE/GQT0LGRuyTk/s1600-h/image[36].png

11 | P a g e

M E T H O D 5 : C A L C U L A T E S T O R E D V A L U E S W I T H B U S I N E S S R U L E S

You may choose to create placeholder database fields and calculate the value of such

fields with the help of business rules by marking methods with ControllerAction

attribute.

The placeholder calculated fields are stored in your database but are not designed to be

changed by users. Make sure to mark such fields as read-only.

This method provides you with enough control to do just about anything when

calculating the values and preserves your ability to allow user-defined sorting and

filtering. You can augment your calculations with stored procedures, business logic

written in other languages, call external web services… The list can go on.

Read about ControllerAction attribute at

http://blog.codeontime.com/2009/02/business-rules-controlleraction.html.

C O N C L U S I O N

http://blog.codeontime.com/2009/02/business-rules-controlleraction.html
http://lh4.ggpht.com/_FyYdtUpPPLU/Sf6xwh0HpBI/AAAAAAAAAgM/1m43uKp1orY/s1600-h/image[42].png

12 | P a g e

Numerous options to introduce calculated values are supported in Data Aquarium

Framework applications. Methods 4 and 5 are most flexible. Use server-side

calculated/computed fields defined as SQL expressions or create physical placeholder

fields and develop custom business rules with the power of .NET Framework.

 Code OnTime LLC

http://www.codeontime.com

http://codeontime.com/productsDAF.aspx
http://codeontime.com/productsDAF.aspx

