
1 | P a g e

Tracking User Actions

Tracking of user activities is a common requirement for many business applications.

Data Aquarium Framework support Microsoft ASP.NET Membership via an advanced

user management and login/logout user interface components. You can quickly create

business rules to track user actions.

S A M P L E A P P L I C A T I O N

Generate a Data Aquarium project with the membership option enabled. Here is a

typical screen shot of a Northwind database sample after the user with the name user

has signed in.

http://blog.codeontime.com/2009/04/tracking-user-actions.html
http://codeontime.com/productsDAF.aspx
http://codeontime.com/productsDAF.aspx
http://lh4.ggpht.com/_FyYdtUpPPLU/SeRXpH0LwAI/AAAAAAAAAb8/oXK7wW432wM/s1600-h/image[5].png

2 | P a g e

T A S K 1

You want to keep a journal of user activities. The built-in .NET diagnostics facility will

play a role of a journal where we will be keeping all activity records.

S O L U T I O N

Create a business rules class Class1 and create method OrdersAfterUpdate as shown

below. Link the business rules class to ~/Controllers/Orders.xml data controller as

explained here.

C#

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using MyCompany.Data;

public class Class1 : BusinessRules

{

 [ControllerAction("Orders", "Update", ActionPhase.After)]

 protected void OrdersAfterUpdate(int orderId, FieldValue shipAddress)

 {

 System.Diagnostics.Debug.WriteLine(String.Format(

 "Order #{0} has been updated by '{1}' on {2}",

 orderId, Context.User.Identity.Name, DateTime.Now));

 if (shipAddress.Modified)

 System.Diagnostics.Debug.WriteLine(String.Format(

 "Address has changed from '{0}' to '{1}.",

 shipAddress.OldValue, shipAddress.NewValue));

 }

}

VB

http://blog.codeontime.com/2009/04/filtering-and-business-rules.html

3 | P a g e

Imports Microsoft.VisualBasic

Imports MyCompany.Data

Public Class Class1

 Inherits BusinessRules

 <ControllerAction("Orders", "Update", ActionPhase.After)> _

 Protected Sub OrdersAfterUpdate(ByVal orderId As Integer, _

 ByVal shipAddress As FieldValue)

 System.Diagnostics.Debug.WriteLine(String.Format(_

 "Order #{0} has been updated by '{1}' on {2}", _

 orderId, Context.User.Identity.Name, DateTime.Now))

 If (shipAddress.Modified) Then

 System.Diagnostics.Debug.WriteLine(String.Format(_

 "Address has changed from '{0}' to '{1}.", _

 shipAddress.OldValue, shipAddress.NewValue))

 End If

 End Sub

End Class

Open application in a web browser and select Orders data controller from the drop

down in the top left corner. Start editing any order in the grid or form view and make

sure to change Ship Address field. This field is the last visible field in the screen shot.

4 | P a g e

Hit OK button and the business method rule will intercept the action as soon as a

successful database update has been completed. The first line of code will report the

order ID and the user’s identity. The second line of code will detect the change in the

address field.

Property Context provides business rules developers with the same Request, Response,

User, Application, Session, and Server properties that are available to web form

developers.

http://lh5.ggpht.com/_FyYdtUpPPLU/SeRXqAnsg7I/AAAAAAAAAcE/Bs4fY6l0vH8/s1600-h/image[22].png
http://lh5.ggpht.com/_FyYdtUpPPLU/SeRXq89d-cI/AAAAAAAAAcM/Hw8NwiDy-SA/s1600-h/image[27].png

5 | P a g e

The first two properties shall not be used since they provide information related to a

current web service request and cannot be used to influence the user interface

presentation.

Use the other properties as you if you were writing a typical web form.

Replace System.Diagnostics.Debug with a business object that is designed to keep track

of user activities in a permanent data store such as a database table.

T A S K 2

All records in a database of orders must be marked with a reference to a user. User

information will be utilized to filter data and for data analysis and reporting purposes.

S O L U T I O N

Alter table [Northwind][.dbo].[Orders] to include new field UserName by executing the

following SQL statement.

alter table Orders

add UserName varchar(50)

go

Modify command command1 in the data controller ~/Controllers/Orders.xml to select

the new field twice. Once the field is selected under its own name and the other time we

are selecting this very field under alias UserNameReadOnly. The reason for that is

explained later.

 <command id="command1" type="Text">

 <text>

 <![CDATA[

select

 "Orders"."OrderID" "OrderID"

 ,"Orders"."UserName" "UserName"

 ,"Orders"."UserName" "UserNameReadOnly"

6 | P a g e

from "dbo"."Orders" "Orders"

]]>

 </text>

 </command>

Add two field definitions for UserName instances in SQL statement to the list of data

controller fields.

<fields>

 <field name="UserName" type="String" label="User Name"/>

 <field name="UserNameReadOnly" type="String" label="User Name"

readOnly="true"/>

</fields>

Let’s add the new read-only version of the field and a hidden version of the field to the

list of data fields of views grid1 and editForm1.

<dataField fieldName="UserNameReadOnly"/>

<dataField fieldName="UserName" hidden="true"/>

Modify view createForm1 to include field UserName as a single hidden field.

<dataField fieldName="UserName" hidden="true"/>

We will silently assign a user name when a new record is created to the data controller

field UserName. The captured value will be displayed when users review existing

records but will be drawn from UserNameReadOnly for display purposes instead.

Add the following business rule to class Class1.

C#

[ControllerAction("Orders", "Update", ActionPhase.Before)]

[ControllerAction("Orders", "Insert", ActionPhase.Before)]

7 | P a g e

protected void OrdersBeforeUpdate(FieldValue userName)

{

 userName.NewValue = Context.User.Identity.Name;

 userName.Modified = true;

}

VB

 <ControllerAction("Orders", "Update", ActionPhase.Before)> _

 <ControllerAction("Orders", "After", ActionPhase.Before)> _

 Protected Sub OrdersBeforeUpdate(ByVal userName As FieldValue)

 userName.NewValue = Context.User.Identity.Name

 userName.Modified = True

 End Sub

This method will be automatically invoked whenever an order is about to be updated or

inserted into database.

The first line will assign name of the currently logged-in user to the UserName field.

The second line will indicate that the field has actually changed. The framework is using

Modified property of FieldValue instances to determine if a field shall be included in

automatically generated SQL statement to update or insert a record.

You can also do an update on your own without relying on the framework. The best

place for that sort of updates is in business rules methods with ActionPhase.After

specifies as a parameter of ControllerAction attribute.

Here is how the grid of orders will look if you update a few records. The right-most

column is displaying the name of the user.

8 | P a g e

The two fields UserName and UserNameReadOnly are required since read-only fields

are never transferred to the server from the client web page. Hidden fields are never

displayed but always travel from the client to the server and back. By introducing two

versions of the same field we overcome this limitation imposed by the framework’s

optimization logic.

C O N C L U S I O N

Business rules in Data Aquarium Framework provide an excellent place to universally

track user activities.

 Code OnTime LLC

http://www.codeontime.com

http://codeontime.com/productsDAF.aspx
http://lh6.ggpht.com/_FyYdtUpPPLU/SeRXrXyYAtI/AAAAAAAAAcU/vbZl9FyorsY/s1600-h/image[38].png

