
1 | P a g e

Business Rules: RowBuilder Attribute

Latest update of Data Aquarium Framework introduces a new and much improved

method of extending framework with custom business logic. You can take full advantage

of declarative user interface of data controllers custom form templates, while having a

significant control over data processing.

A B O U T B U S I N E S S R U L E S

ASP.NET development model makes it very easy for developers to mix user interface

code and business logic code. It is just too tempting to write a few lines of a business

rule that will be executed in response to a user interface control event. This leads to

expensive maintenance.

We have put a significant effort into preventing such code blending from happening in

applications built with Data Aquarium Framework. The first step was to introduce

custom action handlers and data filters.

The new release builds on top of these two features and uses attribute-based approach

to business rule development.

We will start review of business rules with RowBuilder attribute.

S A M P L E W E B A P P L I C A T I O N

Generate a sample Data Aquarium application from Northwind database. Leave

MyCompany as a default namespace. Make sure to request generation of business logic

layer. We will use generated business objects to enhance our business rules whenever we

need to access data. Note that if you generate your application with Membership

support enabled then you will have to sign into your application in order to see any data

presentation.

http://blog.codeontime.com/2009/02/business-rules-rowbuilder-attribute.html
http://codeontime.com/productsDAF.aspx
http://blog.codeontime.com/2008/08/custom-templates-for-ajax-forms-in-data.html
http://codeontime.com/productsDAF.aspx
http://blog.codeontime.com/2008/07/creating-custom-action-handlers-in-data.html
http://blog.codeontime.com/2008/09/server-side-data-filters.html
http://codeontime.com/productsDAF.aspx
http://codeontime.com/products_membership.aspx

2 | P a g e

Open generated project in Visual Studio 2008 or Visual Web Developer 2008 and add a

new class Class1 to ~/App_Code folder of your application. Our new class will inherit its

base functionality from BusinessRules class of MyCompany.Data namespace.

C#:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using MyCompany.Data;

public class Class1: BusinessRules

{

 public Class1()

 {

 }

}

VB:

Imports Microsoft.VisualBasic

Imports MyCompany.Data

Public Class Class1

 Inherits BusinessRules

End Class

Open file ~/Controllers/Employees.xml and add attribute handler to dataController

element.

<dataController name="Employees" conflictDetection="overwriteChanges"

 label="Employees" xmlns="urn:schemas-codeontime-com:data-aquarium"

 handler="Class1">

3 | P a g e

This will hook your business rules to Employees data controller. Your business rules will

be universally applied whenever a reference to a data controller is made. You business

rules will be invoked when your application is utilizing DataViewExtender or

ControllerDataSource, when you export data or create new employees in data lookups.

The same set of business rules can be applied to multiple data controllers.

B U I L D I N G N E W R O W S

The first rule will be assigning employee ID of company's CEO to ReportsTo field of any

new employee record.

Add the following method to Class1.

C#:

[RowBuilder("Employees", "createForm1", RowKind.New)]

protected void PrepareNewEmployeeRow()

{

 using (SqlText findCEO = new SqlText(

 "select EmployeeID, LastName from Employees where ReportsTo is

null"))

 {

 if (findCEO.Read())

 {

 UpdateFieldValue("ReportsTo", findCEO["EmployeeID"]);

 UpdateFieldValue("ReportsToLastName", findCEO["LastName"]);

 }

 }

}

VB:

<RowBuilder("Employees", "createForm1", RowKind.New)> _

Protected Sub PrepareNewEmployeeRow()

4 | P a g e

 Using findCEO As SqlText = New SqlText(_

 "select EmployeeID, LastName from Employees where ReportsTo is null")

 If findCEO.Read() Then

 UpdateFieldValue("ReportsTo", findCEO("EmployeeID"))

 UpdateFieldValue("ReportsToLastName", findCEO("LastName"))

 End If

 End Using

End Sub

The protection level of this method is only important if you are planning to create

hierarchies of business rule classes.

The name of the method plays no role at all. Name your business rules methods to

reflect their purpose.

The method is automatically called whenever a new row is about to be returned to user

interface components by Employees data controller. Typically this will happen when

end user is creating a new record. There is also a restriction on the presentation view

that will ensure method execution when createForm1 is presenting data. You can apply

multiple RowBuilder attributes to the same method if the same business logic is

executed by other controllers and/or views.

Use method UpdateFieldValue to assign any default values to fields of a new row.

Class SqlText is a utility provided with Data Aquarium Framework to give you a simple

and efficient way of querying a database.

Run the sample application and start creating a new employee record. Scroll to the

bottom of the screen to see the result of our effort.

5 | P a g e

Next post will show how to manipulate fields of existing rows and demonstrate new look

item style CheckBoxList.

The new lookup item style is featured in Membership user manager. Select any user and

start editing a record. A menu of check boxes is presented to help you select user roles.

 Code OnTime LLC

 http://www.codeontime.com

http://dev.codeontime.com/demo/membership
http://lh5.ggpht.com/_FyYdtUpPPLU/SaZPQW3BDxI/AAAAAAAAAYo/xXlvjnIk7X4/s1600-h/image[7].png

