

2010

COOKBOOK
 Creating an Order Form

1

Table of Contents
Understanding the Project .. 2

Table Relationships ... 2

Objective ... 4

Sample... 4

Implementation .. 4

Generate Northwind Sample .. 5

Order Form Page ... 8

Add Page in Designer .. 8

Add Container to Page .. 9

Add Data View for “Orders” .. 9

Add Data View for “Order Details” ... 10

Customizing “Orders” Controller .. 12

Customizing “Order Details” Controller .. 19

Total and Subtotal ... 28

Calculating Freight .. 33

Custom Form Template .. 39

2

Understanding the Project

Table Relationships
We have two tables, Orders and Order Details. Both tables are from the Northwind sample database.

Orders is the master table, and Order Details is the details table.

Each Order record references a Customer, an Employee, and a Shipper. We also know the Order Date,

Required Date, Shipped Date, Freight Amount, and shipping information.

3

Order Details table features Unit Price, Quantity, Discount, and a pointer to Products. This also

references Categories and Suppliers.

We want both Orders and Order Details to be presented as shown in the picture.

4

Objective
The objective of this tutorial is to create an order detail form that allows the following:

1. Browsing a list of orders

2. Creating new orders

3. Editing existing orders

4. Calculating order freight

5. Displaying order subtotal and total

Sample
Below is a picture of the sample order form in action. You can navigate through orders using the buttons
with up and down arrows. Details of the current order will be displayed in the list inside of the order
form template. The order subtotal and total are calculated based on the total extended price of all
items. The total is composed of the freight added to the subtotal. The dynamic aggregate line
automatically updates values based on the filter selected in the order details. It shows average unit
price, sum of quantity, average discount and sum of extended price of line items.

Implementation
These are the steps we need to go through to implement an Order Form.

1. Generate sample Northwind web application

2. Add new page called Order Form

3. Customize Orders data controller

4. Customize Order Details data controller

5. Add Total and Subtotal to Orders controller

6. Calculate Freight based on order Subtotal

7. Create custom template for Order Form

The steps are explained in further detail below.

5

Generate Northwind Sample
If you don’t have the Northwind database, navigate to

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=06616212-0356-46a0-8da2-

eebc53a68034&displaylang=en and download the database scripts.

Next, generate a Web Site Factory application using Code On Time Generator straight from the

Northwind database.

Give it the name of “OrderFormSample”.

For the database connection, access the connection string assistant by clicking on the link below the

field, write in your server name, and select the Northwind database.

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=06616212-0356-46a0-8da2-eebc53a68034&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=06616212-0356-46a0-8da2-eebc53a68034&displaylang=en

6

Make sure to enable reporting.

Enable ASP.NET membership.

And finally, enable Permalinks and Interactive History.

7

Leave the rest of the options with their default values and generate the application.

8

Order Form Page

Add Page in Designer

Now it’s time to create a new page in the Designer, with the name of “Order Form”.

In Code On Time Generator, click on the name of the project, and press the Design button. Go to the All

Pages tab. On the action bar, press New | New Page. The name will be “OrderForm”, with Index of

“1005”, Title and Path of “Order Form”, and Description of “This is the order management form”.

The Style will be “Miscellaneous”, and About This Page will be the same as Description. Remove “*” from

Roles to hide the menu option for anonymous users.

9

Add Container to Page

Click on the new page in the All Pages list, and navigate to the Containers tab. On the action bar, press

New | New Container. Leave the properties as default and save the new container.

Add Data View for “Orders”

Navigate to the Data Views tab, and press New | New Data View. The Container will be “c100”,

Controller will be “Orders”, and View will be “grid1”.

10

Scroll down to Presentation properties, and uncheck “Show Details in List Mode”. This way, no details

will be shown next to master records in the list.

Don’t forget to save the record.

Add Data View for “Order Details”

On the action bar, add another data view by pressing New | New Data View. Container will be “c100”,

Controller will be “OrderDetails”, and View will be “grid1”.

11

Let’s set up a few other properties below. Disable “Show View Description”, “Show View Selector”,

“Show Pagers”, set Page Size to “300”, and enable “Show Modal Forms”.

Next, set Filter Source to be the Orders data controller from the data view “dv100”. The Filter Field will

be “OrderID”. Set Auto-Hide field to “Self”.

Close the Designer and regenerate the project. (Note: You only need to regenerate the application to

view the latest changes). When you sign into the web application, you can see that the Order Form page

has been added to the menu navigation and sitemap. Navigate to the page, and you can see the list of

orders.

12

You can browse the list of orders. Select an order, and you will view its details, including order details

below.

Customizing “Orders” Controller

Set Sort Expression

In the Designer, select the Orders controller from the list of All Controllers. Switch to the Views tab, and

select “grid1”. Edit Sort Expression field so that it reads “OrderDate desc”. The grid will be ordered in

descending order by Order Date.

Configure “Customer ID” Lookup Field

If you create a new order in the current application, the Customer Company Name needs to be selected

using the lookup. You can also use advanced search to find the records by a specific field. It would be

nice if advanced search opened by default. It would also be nice if the shipping information of the

selected customer would be pasted into the order information.

This can be done in Designer. Select the Orders data controller from the list of all controllers. Navigate to

the Fields tab, and click on the CustomerID field. Press Edit, and scroll down to the Lookup section.

Change the Data Value Field to CustomerID, and the Data Text Field to CompanyName. The Copy field

will specify which fields are copied from the selected customer into the orders record. In this field, write:

ShipName=ContactName
ShipAddress=Address
ShipCity=City
ShipRegion=Region
ShipPostalCode=PostalCode
ShipCountry=Country

13

Enable “Search on Start” and “Activate If Blank”. In Lookup window description, type “Select a

customer”.

Close the Designer, and regenerate the application. Navigate to the Order Form page in the web

application. While creating a new order, if you activate the lookup for Customer Company Name, the

lookup will be in advanced search mode.

When you select a customer from the lookup, the shipping information will be copied over as well.

14

Configure “Employee ID” Lookup Field

In the Designer, go to All Controllers. Select the Employees data controller. Switch to the Views tab.

Select “grid1”, and switch to Data Fields tab. On the action bar, press New | New Data Field. Set Field

Name to Photo, and save the field.

Now, go back to the list of All Controllers, and select the Orders data controller. Navigate to the Fields

tab and click on EmployeeID. Edit, and scroll down to the Lookup section. Enable “Activate If Blank” and

type “Select an employee” for Lookup window description.

Now in the regenerated application, when you select a customer for a new order, the Employee lookup

will automatically appear.

15

Set Default Value for “Order Date” Field

In the list of All Controllers, select the Orders controller. Switch to the Fields tab, and click on OrderDate.

Press Edit, and enter “DateTime.Now” in the Code Default field.

Save, and regenerate the application. When you create a new order, the current date will be

automatically entered into Order Date.

16

Delete Fields From “createForm1” View

Select the Orders controller from the list of All Controllers. Navigate to the Views tab, and click on

“createForm1”. Switch to the Data Fields tab. By using the dropdown menu next to ShippedDate, press

Delete.

Delete the fields ShipVia and Freight as well. Save, and regenerate the application. Below, you can see

the compact version of createForm1 without the fields ShippedDate, ShipVia, and Freight.

When the record is saved, it will be automatically selected, and Order Details will be displayed below the

Order record. It would be nice if the master record would be in edit mode right after the insertion.

17

Display Inserted Master Record in Edit Mode

In the list of All Controllers, select Orders. Navigate to the Action Groups tab, and select “ag2” from the

list. Click on the Actions tab at the top of the page. The very last action in the list is Select. Using the

context menu, edit the action and change the Command Name to “Edit”.

Save the action, and regenerate the application. When you save a new record in the Order Form page, it

will still be editable without having to press Edit.

Set Size of “Shipping” Data Fields

In the list of All Controllers, select the Orders controller. Switch to the Views tab. Select editForm1, and

switch to the Data Fields tab. Edit the Freight field, and change Columns to “5”.

18

Change the number of Columns for all shipping fields to “30”, as shown below.

Change “Ship Via Company Name” Lookup to Dropdown

Select the Orders controller from the All Controllers list. On the Fields tab, select ShipVia. Click Edit, and

scroll down to Lookup section. Change the Items Style to “Drop Down List”.

Now, go to the Categories tab and edit Orders category. Change the Floating field to “Yes”, so that the

fields will float.

If you save and regenerate the application, the Order Form page will look like the image below.

19

Customizing “Order Details” Controller

Customize “Product Id” Lookup

Select Order Details controller from the All Controllers list, and switch to the Fields tab. Click on

“ProductID”, and press Edit. Scroll down to the Lookup section. In the Copy field, write

“UnitPrice=UnitPrice”, so that the unit price of the product will be pasted into the unit price of the

order. Enable “Search on Start” and “Activate if Blank”. Lookup window description will be “Select a

product”.

Save and regenerate the application. Now, when an order is selected in the Order Form page, and you

create a new Order Detail, a prompt will immediately open requiring you to select a product.

20

When you select a product, the unit price will automatically be copied into the Order Details record.

Assign Default Values to “Quantity” and “Discount”

Now select the field Quantity, and press Edit. You can see that the standard default value is ((1)),

assigned as part of the SQL expression. In the Code Default field, type “1” and save the field. The

expression will be in either C# or VB, depending on the language of the project.

Perform the same operation on Discount field. Provide a Code Default of “0”.

21

For the Discount field, scroll down to the Presentation section, and change Data Format String to “p” to

format the field as a percentage. You can also write “{0:p}”.

Now, when you create a new Order Details and select a product, Unit Price, Quantity, and Discount are

automatically prepopulated, and Discount is formatted as a percentage.

Add “Extended Price” Field

An Extended Price field is necessary to calculate the price of each line item. In All Controllers, select

OrderDetails. Switch to Fields tab, and on the action bar, press New | New Field. Give this field the name

“ExtendedPrice”, of Type “Currency”. Enable “The value of this field is computed at run-time by SQL

Expression”, and paste in the code below in the SQL Formula field.

OrderDetails.UnitPrice*OrderDetails.Quantity*(1-OrderDetails.Discount)

22

The OrderDetails alias used in the previous expression is referring to command1 of the controller

OrderDetails. The “select” statement provides a dictionary of fields for the data controller.

Scroll down to the Presentation section of the field, set Label as “Extended Price”, and enter “c” for the

Data Format String to make sure the value appears as a currency. Enable “Values of this field cannot be

edited”, as it is a calculated field. Save the field.

To make sure that the field is displayed in the application, you need to bind the new field to the data

view. Select the field in the field list, and click on the Data Fields tab. This list is empty, as the field is not

bound to any controller. On the action bar, press New | New Data Field. Bind this data field to

“createForm1” View, and “New Order Details” Category.

23

Save, and create one more data field. This one will have View of “editForm1”, and Category of “Order

Details”.

The last data field will have View of “grid1”, with no Category.

Now, if you regenerate and select an order in the Order Form page, you can see the Extended Price field

displayed in the Order Details grid.

24

Update “Extended Price” Field

When you add a new Order Detail, Extended Price will show up as “N/A”. The calculation is executed on

the server, as part of the SQL Expression. Let’s have the field be updated to reflect changes in Product

ID, Quantity, Price, and Discount.

In the list of All Controllers, select OrderDetails controller. In the Fields tab, select ExtendedPrice field.

Press Edit, and indicate that “The value of the field is calculated by a business rule expression”. In the

Code Formula box that appears, write in the following code below:

Convert.ToDecimal(unitPrice) * Convert.ToDecimal(quantity) * (1 –

Convert.ToDecimal(discount))

This expression is reminiscent of SQL Formula, but it is written in the language that the project was

generated in. In this case, it is Visual Basic.

The calculation will be performed when the specified Context Fields are modified. These Context Fields

will be “ProductID, UnitPrice, Quantity, Discount”.

Now, when you create a new Order Details record, the Extended Price field will be updated when any of

the fields are changed. The calculation will be performed when you hit Enter on your keyboard.

25

The source of the automatically generated business rules class that performs calculation of Extended

Price is presented below.

App_Code/Rules/OrderDetails.Generated.vb

Namespace MyCompany.Rules

 Partial Public Class OrderDetailsBusinessRules
 Inherits MyCompany.Data.BusinessRules

 <ControllerAction("OrderDetails", "Calculate", "ExtendedPrice")> _
 Public Sub CalculateOrderDetails(ByVal orderID As Nullable(Of Integer), _
 ByVal orderCustomerID As String, _
 ByVal orderCustomerCompanyName As String, _
 ByVal orderEmployeeLastName As String, _
 ByVal orderShipViaCompanyName As String, _
 ByVal productID As Nullable(Of Integer), _
 ByVal productProductName As String, _
 ByVal productCategoryCategoryName As String, _
 ByVal productSupplierCompanyName As String, _
 ByVal unitPrice As Nullable(Of Decimal), _
 ByVal quantity As Nullable(Of Short), _
 ByVal discount As Nullable(Of Single))
 UpdateFieldValue("ExtendedPrice", Convert.ToDecimal(unitPrice) * _
 Convert.ToDecimal(quantity) * (1 - Convert.ToDecimal(discount)))
 End Sub

 <RowBuilder("OrderDetails", RowKind.New)> _
 Public Sub BuildNewOrderDetails()
 UpdateFieldValue("Quantity", 1)
 UpdateFieldValue("Discount", 0)
 End Sub
 End Class
End Namespace

App_Code/Rules/OrderDetails.Generated.cs

namespace MyCompany.Rules
{
 public partial class OrderDetailsBusinessRules : MyCompany.Data.BusinessRules
 {

 [ControllerAction("OrderDetails", "Calculate", "ExtendedPrice")]
 public void CalculateOrderDetails(Nullable<int> orderID, string orderCustomerID,
 string orderCustomerCompanyName, string orderEmployeeLastName, string orderShipViaCompanyName,
 Nullable<int> productID, string productProductName, string productCategoryCategoryName,
 string productSupplierCompanyName, Nullable<decimal> unitPrice, Nullable<short> quantity,
 Nullable<float> discount)
 {
 UpdateFieldValue("ExtendedPrice", Convert.ToDecimal(unitPrice) *
 Convert.ToDecimal(quantity) * (1 - Convert.ToDecimal(discount)));
 }

 [RowBuilder("OrderDetails", RowKind.New)]
 public void BuildNewOrderDetails()
 {
 UpdateFieldValue("Quantity", 1);
 UpdateFieldValue("Discount", 0);
 }
 }
}

26

Delete “Order XXXX” Fields from “grid1” View

Select OrderDetails from the list of All Controllers. Switch to the Views tab. Click on grid1, navigate to the

Data Fields tab, and delete all the fields that start with the word “Order.” This includes

OrderCustomerCompanyName, OrderEmployeeLastName, and OrderShipViaCompanyName.

Assign Aggregates

The new Order Form page is much cleaner, without unnecessary duplicate master fields in details. The

next step would be to add a summary that shows total price, average discount, total quantity, and

average price.

Select the OrderDetails controller from the All Controllers list. Switch to Views and select grid1. On the

Data Fields tab, first select Unit Price. Edit, and change Aggregate Function to “Average”.

27

Next, edit Quantity field and change Aggregate Function to “Sum”.

Edit Discount field, and change Aggregate Function to “Average”.

Lastly, the ExtendedPrice field will have Aggregate Function of “Sum”.

28

Below, you can see the Order Details list with aggregates at the bottom. These aggregates will change to

reflect any changes as you navigate between orders, change order details, or filter order details.

Total and Subtotal

SQL Expression for Subtotal

From All Controllers, select Orders. Switch to Fields, and on the action bar, press New | New Field. Field

Name is “Subtotal”, of Type “Currency”. Enable “The value of this field is computed at run-time by SQL

Expression”. In the SQL Formula field that appears, type the expression below:

Select sum(unitprice*quantity*(1-discount)) from “order details”

where “Order Details”.OrderID = Orders.OrderID

This will be pasted verbatim into the output expression which retrieves values for the Orders table.

The Label field will be “Subtotal”, enable “Values of this field cannot be edited”, and type “c” in Data

Format String.

29

Add Business Rules to “Orders” Controller and Code Expression for “Subtotal” Field

The Subtotal field is now present in the application. However, it does not update to reflect changes in

the Order Details. This can be solved by adding a business rule to Orders controller and adding a code

expression for Subtotal that will use this rule to calculate the subtotal.

Select the Orders controller from All Controllers list. Edit the controller, and in the Handler field, type

“OrdersBusinessRules”.

Regenerate the project, and open it in Microsoft Visual Studio or Visual Web Developer. Navigate to

App_Code | Rules | OrdersBusinessRules.vb. Enter the CalculateOrderDetailsTotal function.

App_Code/Rules/OrdersBusinessRules.vb

Imports MyCompany.Data
Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Linq

Namespace MyCompany.Rules

 Partial Public Class OrdersBusinessRules
 Inherits MyCompany.Data.BusinessRules

 Public Function CalculateOrderDetailsTotal(ByRef orderID As Nullable(Of Integer)) As Decimal
 Using calc As SqlText = New SqlText(_
 "select sum(unitprice * quantity * (1 - discount)) from [Order Details] where OrderID=
@OrderID")
 calc.AddParameter("@OrderID", orderID)
 Dim total As Object = calc.ExecuteScalar()
 If DBNull.Value.Equals(total) Then
 Return 0
 Else
 Return Convert.ToDecimal(total)
 End If
 End Using
 End Function
 End Class
End Namespace

30

App_Code/Rules/OrdersBusinessRules.cs

using MyCompany.Data;
using System;
using System.Collections.Generic;
using System.Data;
using System.Linq;

namespace MyCompany.Rules
{
 public partial class OrdersBusinessRules : MyCompany.Data.BusinessRules
 {
 public decimal CalculateOrderDetailsTotal(int? orderID)
 {
 using (SqlText calc = new SqlText(@"select sum(unitprice * quantity * (1 - discount)) from
[Order Details] where OrderID= @OrderID"))
 {
 calc.AddParameter("@OrderID", orderID);
 object total = calc.ExecuteScalar();
 if (DBNull.Value.Equals(total))
 return 0;
 else
 return Convert.ToDecimal(total);

 }
 }
 }
}

This function uses SqlText class to create an instance of a query connected to the project’s database.

This simple query selects a sum of UnitPrice multiplied by Quantity multiplied by one minus the

Discount. Don’t forget to save the file.

Note that SqlText utility class is generated as a part of the code base of your application. It uses the

default database connection string and ADO.NET to execute the query.

Switch to the Designer, navigate to the Fields tab of the Orders controller, and select Subtotal. Edit, and

enable “The value of this field is calculated by a business rule expression”. In the Code Formula field that

appears, type in the code below:

CalculateOrderDetailsTotal(orderID)

This is the method that was defined in Visual Studio.

31

To make sure that the calculation will occur when details are changed, change Context Fields to

“OrderDetails”.

Add Total Field, Configure SQL Expression and Context Fields

To handle the Total calculation, you will need to configure an SQL expression similar to the one used in

Subtotal, except that Freight will be included. From All Controllers, select Orders, and switch to Fields

tab. Press New | New Field. Give this field the Name of “Total”, of Type “Currency”. Enable “The value of

this field is computed at run-time by SQL Expression”, and in the SQL Formula, type in the following

expression:

(Select sum(unitprice*quantity*(1-discount)) from “order details” where “Order

Details”.OrderID = Orders.OrderID) + Orders.Freight

Also, enable “The value of the field is calculated by a business rule expression”, and type in:

CalculateOrderDetailsTotal(orderID) + freight

32

The Label will be “Total”, and Data Format String is “c”. Enable “Values of this field cannot be edited”.

In the Context Fields, type “OrderDetails, Freight”.

Now we need to bind the field Total to the views. Click on the field, and switch to Data Fields tab. On the

action bar, press New | New Data Field. For View, select “editForm1”. Category will be “Orders.”

Create another field. The View will be “grid1”, with no Category.

33

If you regenerate the application, you can see this new field in action. It will calculate the total, including

the cost of freight for the order.

Enable Sorting and Filtering

The new Subtotal and Total fields do not allow sorting or filtering, unlike the other fields in the view.

Let’s enable this feature. Select the Orders controller from the list of All Controllers. Switch to Fields, and

select Subtotal. Enable “Allow Query-by-example” and “Allow Sorting”.

Perform the same operation with Total field.

Calculating Freight

The calculation will analyze Order ID and current Freight value. If the order total is greater than $100,

then Freight will be $19.95 flat. Otherwise, Freight is $3.95. User can also override the Freight value.

Below is the updated version of the Orders business rules class. There is an added method called

CalculateFreight. It takes nullable integers orderID and freight, and returns a decimal value. It will call

CalculateOrderDetailsTotal method. If Freight is equal to blank, 0, 3.95, or 19.95, then it will be returned

as 19.95 for Total greater than $100, or 3.95 for Total under $100. If the conditions are not met, then

Freight will not be affected.

34

Modify OrdersBusinessRules.vb(cs) to support the calculation of freight. The sample implementation of

CalculateFreight is presented next.

App_Code/Rules/OrdersBusinessRules.vb

Namespace MyCompany.Rules

 Partial Public Class OrdersBusinessRules
 Inherits MyCompany.Data.BusinessRules

 Public Function CalculateOrderDetailsTotal(ByRef orderID As Nullable(Of Integer)) As Decimal
 Using calc As SqlText = New SqlText(_
 "select sum(unitprice * quantity * (1 - discount)) from [Order Details] where OrderID=
@OrderID")
 calc.AddParameter("@OrderID", orderID)
 Dim total As Object = calc.ExecuteScalar()
 If DBNull.Value.Equals(total) Then
 Return 0
 Else
 Return Convert.ToDecimal(total)
 End If
 End Using
 End Function

 Public Function CalculateFreight(ByRef orderID As Nullable(Of Integer), _
 ByRef freight As Nullable(Of Decimal)) As Decimal
 Dim total As Decimal = CalculateOrderDetailsTotal(orderID)
 If Not freight.HasValue Or freight.Value = 0 Or freight.Value = 3.95 Or _
 freight.Value = 19.95 Then
 If total >= 100 Then
 Return 19.95
 Else
 Return 3.95
 End If
 Else
 Return freight.Value
 End If
 End Function

 End Class
End Namespace

35

App_Code/Rules/OrdersBusinessRules.vs

namespace MyCompany.Rules
{
 public partial class OrdersBusinessRules : MyCompany.Data.BusinessRules
 {
 public decimal CalculateOrderDetailsTotal(int? orderID)
 {
 using (SqlText calc = new SqlText(@"select sum(unitprice * quantity * (1 - discount)) from
[Order Details] where OrderID= @OrderID"))
 {
 calc.AddParameter("@OrderID", orderID);
 object total = calc.ExecuteScalar();
 if (DBNull.Value.Equals(total))
 return 0;
 else
 return Convert.ToDecimal(total);

 }
 }

 public decimal CalculateFreight(int? orderID, decimal? freight)
 {
 decimal total = CalculateOrderDetailsTotal(orderID);
 if (!freight.HasValue || freight.Value == 0 || freight.Value == 3.95m ||
 freight.Value == 19.95m)
 if (total > 100)
 return 19.95m;
 else
 return 3.95m;
 else
 return freight.Value;
 }
 }
}

Go back to the Designer, and select Orders from the list All Controllers. Switch to Fields tab, and select

Freight. Enable “The value of the field is calculated by a business rule expression”, and in the Code

Formula field that appears, type the following code:

CalculateFreight(orderID, freight)

In Context Fields, enter “OrderDetails”.

36

If you save and regenerate the application, you can see Freight field in action. When you change Freight

to 0, and hit Enter on your keyboard, the field will be calculated.

If you were to change the size of an Order Detail so that the Subtotal is under $100, Freight will change

to $3.95.

37

Let’s take a quick look at the Orders business rules class that was automatically created by the code

generator for us. You can see that we have a partial class OrdersBusinessRules with method

CalculateOrders adorned with attributes ControllerAction, which respond to Calculate action The

method calculates Freight, Subtotal, and Total fields by calling CalculateOrderDetailsTotal and

CalculateFreight with orderID passed as an argument.

App_Code/Rules/Orders.Generated.vb

Imports MyCompany.Data
Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Linq
Imports System.Text.RegularExpressions
Imports System.Web

Namespace MyCompany.Rules

 Partial Public Class OrdersBusinessRules
 Inherits MyCompany.Data.BusinessRules

 <ControllerAction("Orders", "Calculate", "Freight"), _
 ControllerAction("Orders", "Calculate", "Subtotal"), _
 ControllerAction("Orders", "Calculate", "Total")> _
 Public Sub CalculateOrders(_
 ByVal orderID As Nullable(Of Integer), _
 ByVal customerID As String, _
 ByVal customerCompanyName As String, _
 ByVal employeeID As Nullable(Of Integer), _
 ByVal employeeLastName As String, _
 ByVal orderDate As Nullable(Of DateTime), _
 ByVal requiredDate As Nullable(Of DateTime), _
 ByVal shippedDate As Nullable(Of DateTime), _
 ByVal shipVia As Nullable(Of Integer), _
 ByVal shipViaCompanyName As String, _
 ByVal freight As Nullable(Of Decimal), _
 ByVal shipName As String, _
 ByVal shipAddress As String, _
 ByVal shipCity As String, _
 ByVal shipRegion As String, _
 ByVal shipPostalCode As String, _
 ByVal shipCountry As String, _
 ByVal subtotal As Nullable(Of Decimal), _
 ByVal total As Nullable(Of Decimal))
 UpdateFieldValue("Freight", CalculateFreight(orderID, freight))
 UpdateFieldValue("Subtotal", CalculateOrderDetailsTotal(orderID))
 UpdateFieldValue("Total", CalculateOrderDetailsTotal(orderID) + freight)
 End Sub

 <RowBuilder("Orders", RowKind.New)> _
 Public Sub BuildNewOrders()
 UpdateFieldValue("OrderDate", DateTime.Now)
 End Sub
 End Class
End Namespace

38

App_Code/Rules/Orders.Generated.cs

using System;
using System.Data;
using System.Collections.Generic;
using System.Linq;
using System.Text.RegularExpressions;
using System.Web;
using MyCompany.Data;

namespace MyCompany.Rules
{
 public partial class OrdersBusinessRules : MyCompany.Data.BusinessRules
 {

 [ControllerAction("Orders", "Calculate", "Freight")]
 [ControllerAction("Orders", "Calculate", "Subtotal")]
 [ControllerAction("Orders", "Calculate", "Total")]
 public void CalculateOrders(
 Nullable<int> orderID,
 string customerID,
 string customerCompanyName,
 Nullable<int> employeeID,
 string employeeLastName,
 Nullable<DateTime> orderDate,
 Nullable<DateTime> requiredDate,
 Nullable<DateTime> shippedDate,
 Nullable<int> shipVia,
 string shipViaCompanyName,
 Nullable<decimal> freight,
 string shipName,
 string shipAddress,
 string shipCity,
 string shipRegion,
 string shipPostalCode,
 string shipCountry)
 {
 UpdateFieldValue("Freight", CalculateFreight(orderID, freight));
 UpdateFieldValue("Subtotal", CalculateOrderDetailsTotal(orderID));
 UpdateFieldValue("Total", CalculateOrderDetailsTotal(orderID) + freight);
 }

 [RowBuilder("Orders", RowKind.New)]
 public void BuildNewOrders()
 {
 UpdateFieldValue("OrderDate", DateTime.Now);
 }
 }
}

39

Custom Form Template

You will need to modify the form template, so that the Order Form is easier for the end user to interact

with. First, you need to add Order Form Template user control to the page.

Add “Order Form Template” User Control

In the Designer, click on the All Pages tab. Select “OrderForm”, and switch to Controls tab. On the action

bar, press New | New Control. Press the New User Control icon next to the User Control field. It will have

the Name of “OrderFormTemplate”.

Save, and this will insert the new User Control into the Control. Select “c100” for Container, and save.

Define the Template Placeholder

Open the project in Visual Studio (or Visual Web Developer), and press the Refresh button. Navigate to

App_Code/Controls/OrderFormTemplate.ascx. Open this document, and format using Edit | Format

40

Document. Currently, there is just an UpdatePanel present, which can be eliminated. Use the template

below:

App_Code/Controls/OrderFormTemplate.ascx

<div id="FormTemplate1" runat="server">
 <div id="Orders_editForm1">
 <div class="FieldPlaceholder">
 {CustomerID}
 </div>
 <div class="FieldPlaceholder">
 {EmployeeID}
 </div>
 <div class="FieldPlaceholder">
 {ShipVia}
 </div>
 <div class="FieldPlaceholder">
 {OrderDate}
 </div>
 <div class="FieldPlaceholder">
 {Freight}
 </div>
 <div class="FieldPlaceholder">
 {Total}
 </div>
 </div>
</div>

There is a new element defined, div with id of “FormTemplate1”. Underneath is another div element
with id “Orders_editForm1”. This element instructs the client-side application to present the contents of
editForm1, rendered by Orders data controller, using the template. Underneath this are several more div
elements, of class “FieldPlaceholder”. Inside each, there is just the field name in curly brackets, to get
started.

If you were to save and refresh the application, only the field names will appear in brackets above the
list.

41

This isn’t quite the effect we’re going for, so view code for the file by pressing the View Code button in
the Solution Explorer, and add a line to the method.

App_Code/Controls/OrderFormTemplate.ascx.vb

Partial Public Class Controls_OrderFormTemplate
 Inherits System.Web.UI.UserControl

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) Handles Me.Load
 FormTemplate1.Style("display") = "none"
 End Sub
End Class

App_Code/Controls/OrderFormTemplate.ascx.cs

public partial class Controls_OrderFormTemplate : System.Web.UI.UserControl
{
 protected void Page_Load(object sender, EventArgs e)
 {
 FormTemplate1.Style["display"] = "none";
 }
}

This line will dictate that FormTemplate1 will have a special Style that changes “display” to “none”, so
that the template will not be displayed when the application runs. If you switch to Design mode, you can
still see the controls and interact with them visually. Save, and refresh the web application. You can see
that no field names in brackets will appear, and that only the fields specified in the template are
presented in the detail view.

42

Let’s make a more sophisticated design for the template, which includes the rest of the fields. In order
to build a completely custom template and retain the data functionality of the client side library, you
need to get rid of the labels. Switch back to Visual Studio, and add the class “DataOnly” to each field.

App_Code/Controls/OrderFormTemplate.ascx

<div id="FormTemplate1" runat="server">
 <div id="Orders_editForm1">
 <div class="FieldPlaceHolder DataOnly">
 {CustomerID}
 </div>
 <div class="FieldPlaceHolder DataOnly">
 {EmployeeID}
 </div>
 <div class="FieldPlaceHolder DataOnly">
 {ShipVia}
 </div>
 <div class="FieldPlaceHolder DataOnly">
 {OrderDate}
 </div>
 <div class="FieldPlaceHolder DataOnly">
 {Freight}
 </div>
 <div class="FieldPlaceHolder DataOnly">
 {Total}
 </div>
 </div>
</div>

When you save and refresh the application, you can see that labels are no longer present, but the
formatting is terribly off.

Create Custom HTML Table Layout

You will need to add a custom HTML table layout that uses field placeholders to position the data fields.

The new layout code is displayed below.

Here is the new version of the template, which is much longer than the previous version. You can see

that there is a style element with a few defined CSS rules, .FieldLabel and .RightAlignedInputs.

You can see that there are several div and table elements that hold all of the fields referenced in curly

brackets.

43

App_Code/Controls/OrderFormTemplate.ascx

<%@ Control Language="VB" AutoEventWireup="false" CodeFile="OrderFormTemplate.ascx.vb"
 Inherits="Controls_OrderFormTemplate" %>
<style type="text/css">
 .FieldLabel
 {
 font-weight: bold;
 padding: 4px;
 width: 90px;
 }

 .RightAlignedInputs input
 {
 text-align: right;
 }
</style>
<div id="FormTemplate1" runat="server">
 <div id="Orders_editForm1">
 <table style="width: 100%">
 <tr>
 <td valign="top">
 <table>
 <tr>
 <td class="FieldLabel">
 Customer:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {CustomerID}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Employee:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {EmployeeID}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Order Date:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {OrderDate}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Required Date:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {RequiredDate}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Shipped Date:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {ShippedDate}</div>
 </td>
 </tr>

44

 </table>
 </td>
 <td valign="top">
 <table style="float: right" class="RightAlignedInputs">
 <tr>
 <td class="FieldLabel">
 Address:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {ShipAddress}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 City:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {ShipCity}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Region:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {ShipRegion}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Postal Code:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {ShipPostalCode}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Ship Country:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {ShipCountry}</div>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td colspan="2">
 {dv101Extender}
 </td>
 </tr>
 <tr>
 <td valign="bottom">
 <table>
 <tr>
 <td class="FieldLabel">
 Ship Name:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {ShipName}</div>
 </td>
 </tr>

45

 <tr>
 <td class="FieldLabel">
 Ship Via:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {ShipVia}</div>
 </td>
 </tr>
 </table>
 </td>
 <td align="right">
 <table style="margin-right: 4px;" class="RightAlignedInputs">
 <tr>
 <td class="FieldLabel">
 Subtotal:
 </td>
 <td align="right">
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {Subtotal}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Freight:
 </td>
 <td align="right">
 <div class="FieldPlaceholder DataOnly " style="float: right">
 {Freight}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Total:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {Total}</div>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </div>
</div>

The C# version of the file will feature a different page directive:

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="OrderFormTemplate.ascx.cs"
 Inherits="Controls_OrderFormTemplate" %>

46

Switch to Design view, and you can see how the layout appears. There is a label next to each field. Visual

tools can be used to rearrange the fields to whatever order you would like.

One key element is the {dv101Extender} in the middle of the layout. This refers to Details View with ID of
“dv101”. Open the Designer, switch to All Pages tab, and click on the OrderForm page. If you switch to
Data Views tab, you can see that “dv101” does exist, and it presents OrderDetails.

Save the template, and refresh the web application. Select an order and you can see the new template
at work.

The Customer, Employee, and Date fields are presented on the left side. Shipping Information is
displayed on the right side. The Details grid is automatically inserted in the next row of the template.
Ship Name and Ship Via are displayed in the bottom left, and Subtotal, Freight, and Total are in the

47

bottom right, underneath the Extended Price row of Order Details. If you edit the record, you can see
that the fields have modified lengths. If you use the up and down arrows to move through Orders, you
can see the information change.

If you have a lot of Order Detail records, you can sort and filter using the columns. You can also search

specific products with Quick Find. The Sum will show a sum of the filtered fields, while Subtotal will be

calculated for all fields relevant to the Order.

