

2011

USER GUIDE
Globalization and Localization

1

Globalization and Localization
Code On Time web application generator creates standard ASP.NET web projects and web sites, which

take full advantage of the ASP.NET globalization infrastructure. The globalization support in ASP.NET has

been perfected by Microsoft to allow creation of web applications that work with all cultures and

languages. Our web application generator puts them together to offer a great solution for your

globalization and localization needs.

Globalization
Code On Time applications provide full support for world cultures including date and time, calendar,

numeric, and currency formats. Your application code may use one culture for the server side business

logic and a different culture for presentation.

Globalization settings are configured on the Globalization and Localization page in the project wizard.

The screen shot below shows this page in a new project.

Culture and UI Culture drop down lists are automatically configured to match the locale of your

computer. The screenshot above shows both inputs set to en-US, English (United States).

2

The selections in these drop downs are the primary cultures set in your application. Culture governs the

culture used in the code executed on the server, while UI Culture controls the user interface culture

aspects of the application.

If you are not planning to create applications for other locales then do not make any changes and simply

click Next to continue project configuration. If you are developing an application for a locale that is

different than the one selected by default in Culture and UI Culture then make sure to change the

selections accordingly.

If you have the Unlimited edition of Code On Time Generator, then you have the ability to specify

multiple supported culture sets. This can be done by selecting a combination using the Culture / UI

Culture drop downs and pressing Add Cultures button. Do this for each culture set.

For example, if you are developing a line-of-business application that is expected to have users primarily

in United States, you may have to account for users from the neighboring countries Canada and Mexico

may need to be supported as well. In this age of global commerce it should not be a surprise that the

business users of your web application may need to interact with partners from a distant country.

Let’s use the example above. This application would need to support English, French, Spanish, and

Traditional Chinese. The screen shot below shows configuration of the corresponding supported culture

sets.

You can also enter the support culture sets directly into the Culture Sets textbox as follows:

en-US, en-US; es-MX, es-MX; en-CA, en-CA; fr-CA, fr-CA; zh-TW, zh-TW;

Multiple culture sets are separated by semicolon or line breaks. Culture is separated from UI Culture by

comma within each culture set definition. If both Culture and UI Culture are the same, you may enter

just one culture. UI Culture may be non-specific and defined by two letters of the language (fr, es, en).

This particular example assumes that users in different locales do not share the server culture.

3

This is all the effort necessary to ensure that your application will correctly present and process date,

time, calendars, numbers, and currency values in one or more locales.

Localization
All standard application resources will be automatically localized to the specified UI Culture languages.

Our elegant localization system makes supporting multiple localized resources exceptionally simple and

accessible.

Localization is one of the most complex aspects of application development. Various text fragments are

typically dispersed in static application files such as pages, menus, reports, and the help system. Text

messages are also emitted by business rules to report all sorts of errors and instructions to the end users

of a web application.

ASP.NET does provide standard means of externalizing application resources and creating localized

versions of each resource file. A developer must maintain all resource files in sync and embed references

to specific resources whenever a fragment of text needs to be referenced. In fact, a developer has to

translate their entire application in the language of resource IDs that are subsequently translated into

actual text written in the natural language. If your application is AJAX-based then you need to employ

additional resource DLLs to ensure that localized text resources are available to the client scripts, which

makes the localization process even more complex. Resource files in ASP.NET web applications have

XML format, which requires users to exercise great care when changing them.

By using Code On Time Generator, this extensive task has become simple. Every generated Code On

Time application includes several kinds of files commonly found in many hand-coded ASP.NET web

applications:

Ajax Client Library resources (*.js files)
Data Controller Descriptors (*.xml files)
Web Pages (*.aspx files)
User Controls (*.ascx files)
Site Maps (*.sitemap files)
Core Library and Business Logic (*.cs or*.vb files)

We use a refreshingly simple and consistent method of localizing the

application source code. If you open the generated application source

code in Visual Studio or Windows Explorer then you will find a collection

of text files that include the names of UI cultures supported in your web

application.

The screen shot to the right shows the partial contents of the root folder

of the example application discussed in the previous section. You can

see ClientLibrary.*.txt, Resources.*.txt, and Web.Sitemap.*.txt groups of

text files.

4

The first group defines the localized Client Library resources for all supported locales.

The second group defines localized resources used in the business rules and core library of the

generated application.

The third group defines a collection of localized resources found in the Web.Sitemap, the file that

describes the navigation hierarchy of the application.

You will find a few other clusters of localized resources if you browse the contents of the project. Notice

that all of these clusters are associated with a specific static source file of your project much like

Web.Sitemap and its satellite resources.

Let’s take a look inside. Here are the first three lines from ClientLibrary.en-US.txt.

^About^About^About^

^ActionBarActionsHeaderText^Actions^ActionBarActionsHeaderText^

^ActionBarCancelActionHeaderText^Cancel^ActionBarCancelActionHeaderText^

Next example shows the first three lines from ClientLibrary.fr-CA.txt.

^About^À propos^About^

^ActionBarActionsHeaderText^Actions^ActionBarActionsHeaderText^

^ActionBarCancelActionHeaderText^Annuler^ActionBarCancelActionHeaderText^

This snippet shows the first three lines from ClientLibrary.zh-TW.txt.

^About^關於^About^

^ActionBarActionsHeaderText^動作^ActionBarActionsHeaderText^

^ActionBarCancelActionHeaderText^取消^ActionBarCancelActionHeaderText^

You have probably noticed the pattern that includes localization brackets on both sides of a localized

resource. A localization bracket must start and end with “^” and may contain any combination of

alphanumeric characters, such as ^About^, ^Label1^, ^23^. We call the combination of matching

brackets and text between them a Localization Token.

This is an example of localization tokens SiteHome, HomePath, and HomeDesc found in Web.Sitemap.

<siteMapNode url="~/Default.aspx" title="^SiteHome^Home^SiteHome^" description="">
 <siteMapNode title="^HomePath^Home^HomePath^"
 description="^HomeDesc^Application home page^HomeDesc^"
 url="~/Pages/Home.aspx" />

5

Sample code using localization token RecordChangedByAnotherUser is shown next. Method Replace of

class Localizer automatically adds “^” to the localization token name and wraps it around the text

fragment. This class is the core class of your application. You may find yourself using Localizer.Replace if

you need to write custom business logic in a multi-lingual web application.

if (result.RowsAffected == 0)
{
 result.RowNotFound = true;
 result.Errors.Add(Localizer.Replace("RecordChangedByAnotherUser",
 "The record has been changed by another user."));
}

You can see that the localization token name is present along with the default text fragment in both use

cases. This makes it much easier to understand the intended result. Your web application will remove

the localization token at runtime and try to find the resource associated with the token in a file matched

to the current web request UI culture. If the localized resource is found then it is used in place of the

default value. If the exact match of a specific culture (fr-CA) is not found, then the localizer will try to

find a file that matches the non-specific culture (fr).

All resource text fragments of the core server and client libraries are written in English. You can replace

them if you change the localization files with the corresponding culture. For example, if your culture is

en-US then change the files that end with *.en-US.txt to replace the default English fragments. Do not

change the corresponding source code files directly.

If you change the value between localization brackets and save the file then you have effectively

changed the localized text representation of the corresponding physical resource of your web

application. Simply run your application and observe your changes in action.

If you application is based on Visual Studio solution file, which is the case if you are developing a Web

App Factory, Azure Factory, or SharePoint Factory project, then you will need to compile your

application.

Files ClientLibrary.*.txt are not a part of your application. The web application generator will use the

contents of these files to customize the JavaScript library of your application. If you change any

definitions in ClientLibrary.*.txt file set then make sure to re-generate your project for the changes to

take effect. Also make sure to hit Refresh button of your browser to ensure that the most recent version

of localized resources is loaded in the web browser window.

Other localization file sets found in your project must be deployed along with the application.

Localization files found in the class libraries of your project (applies to Web App Factory, Azure Factory,

SharePoint Factory) will have the culture component in the file name using “_” instead of “-“.

6

Here is a brief description of all standard localization files sets.

File Set Folder Description

ClientLibrary.*.txt ~/ JavaScript Client Library resources.

Resources.*.txt ~/ Resources used in the core application classes and

business rules of application.

Web.Sitemap.*.txt ~/ Text and description of navigation nodes presented in

application menu.

aspnet_Membership.xml.*.txt ~/Controllers Membership manager resources.

aspnet_Roles.xml.*.txt ~/Controllers Role manager resources.

TableOfContents.ascx.*.txt ~/Controls Text fragments used in the standard table of contents

that presents the site map as a tree.

Welcome.ascx.*.txt ~/Controls Text fragments used in the welcome message.

Home.aspx.*.txt ~/Pages Resources definitions found in the home page.

Membership.aspx.*.txt ~/Pages Resource definitions found in the membership manager

page.

Template.xslt.*.txt ~/Reports Resource definitions used in RDLC report template.

Modified localization files are preserved by web application generator. If a new localization token is

introduced in the core library and you have an existing application that does not have such a token then

the code generator will insert the token in the file with a value equal to the default text fragment from

the code generation library.

Multiple Cultures/Languages
Your application may support any number of user interface languages with the same code base. The

application framework offers easy-to-use localization of static resources and simple API to render

localized messages produced by your custom business rules. We have shown examples of localized

static resources and business rules in the previous topic. This capability is only available in the Unlimited

edition of Code On Time.

7

Automatic Translation

Wrap localization brackets around any text. Web application code generator will perform full translation

in all languages supported by your application.

For example, the screen shot below shows the list of fields in Customers data controller. You can see

that the field labels in the third column from the right have been changed to include localization

brackets. Numerical and named tokens such as ^ContName^ and ^3^ are being used for localization.

8

We have also changed various text properties of Customers page in designer.

The following versions of Customers screen are presented if we generate our application and select

languages corresponding to fr-CA and zh-TW cultures.

9

If you inspect the generated application then you will notice the following new culture sets that were

created by Code On Time web application generator.

Localization files for ~/Pages/Customers.aspx

Localization files for ~/Controllers/Customers.xml

Feel free to open any of these text files to refine the localized text fragments. Generated applications

monitor localization files and will start using the fresh content when you save the changes.

Language Detection

Automatic detection of supported culture/language is a part of web applications generated with Code

On Time. If the client browser culture is supported by your app then the appropriate localized resources

are utilized to render the pages without any user involvement.

Web browsers send language preferences to web servers with each request. Culture manager of the

generated web application will automatically match a supported culture set with the languages

accepted by the user’s browser. If a match is found then the culture set is automatically selected.

If the matching culture is not found then the application will use the default culture set of your

application that was selected on the Globalization and Localization page of project wizard.

Language Selector

Membership bar offers a list of languages supported in your application with native names presented to

application users. Language selection is automatically memorized and maintained with a sliding

expiration.

Language selector complements automatic language detection.

We Need Your Help!

Automatic translation of localized resources is performed via Google Translate. The result of translation

may not meet your expectations and we apologize for that.

We need your help with creating high quality localized standard resources. If you do make changes to

any of the localized files listed below then please contribute your translations to benefit the developer

community. You will find additional instructions in ClientLibrary.*.txt files in the root of your

applications.

10

We are looking for help with the following files:

 ClientLibrary.*.txt

 Resources.*.txt

 Web.Sitemap.*.txt

 aspnet_Membership.xml.*.txt

 aspnet_Roles.xml.*.txt

 TableOfContents.ascx.*.txt

 Welcome.ascx.*.txt

 Home.aspx.*.txt

 Membership.aspx.*.txt

 Template.xslt.*.txt

Your contribution will be included in the general distribution of the code generation library. We will post

the names of contributors on our blog with a link to the contributor’s website if requested.

